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SYMBOLS 

ex-Gl ;r 1 rig i dit;. 

elastic modulus 

buckling coefficient 

length of the cylinder 

compressive external force 

radius of the cylinder 

thickness of the cylinder 

displacement normal to cylinder surface 

shell curvature parameter = L2/Rt (1-v2)' 

ratio of axial to circumferential wavelengths 

half wavelength of buckle 

ratio of circumferential to axial compressive forces = 

1 

",/"X 
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ELASTIC STABILITY OF CYLINDRICAL SHELLS UNDER 

AXIAL AND LATERAL LOADS 

In the stability analysis of cylinders under external loading, the axial 

compression and la teral  pressure cases  a r e  relatively well established: see 

for example Ref. 1. However, from a design point of view, a biaxial system 

of forces due to a combination of axial compression and external pressure is 

often encountered in launch vehicle structures.  While many other combined 

loading cases  have appeared in the l i terature ,  the case under present con- 

sideration has not and therefore this paper i s  devoted to a gelleral treatment 

of this problem. It i s  to be noted that Radhakrishnan (Ref. 2 )  presented 

some specific results for this loading combination for elastic and plastic 

buckling. 

Using the Donnell equation for small  deformations, the present report  

considers the effect of various compressive loading combinations on the 

stability problem of an unstiffened circular  cylinder. 

GOVERNING EQUATIONS 

The Donnell equation f o r  cylinders in te rms  of w,  the normal displace- 

ment,  in the absence of twisting forces can be written a s  follows: 

D V8 w t V 4 [ ~  azw/axZ t N azW/ay2] t ~ t / ~ ~ a ~ ~ / a ~ ~  = o (1) 
X Y 

where,  x and y refer to the axial and circumferential directions respectively. 

A suitable form for w ,  in the above equation would be: 

w = sin (x/Xx) sin (y/X ) 
Y 

where,  X and X a r e  the half wavelengths of buckles along x and y directions 
X Y 

respectively. 

Now, for the case of axial compression, that i s  Nx = N and N = 0, the 
Y 

o r  one can 

However, an introduction of 

buckle wavelengths a r e  indeterminate. 
buckling s t r e s s  without making any assumptions on 1 and X 
assume that these a r e  equal to each other. 

l a te ra l  p ressure  usually causes a single buckle along the length of the cylinder, 

In other words, one can obtain the 

X Y’ 
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while there a r e  many buckles in the circumferential direction. 

follows it i s  assumed that there i s  a single buckle along the length of the 

cylinder. Thus X = L/T where L i s  the length of the cylinder. Introducing 

X,/X,, = P, and upon substituting Eq. (2) into Eq. (1) we obtain, 

Hence in what 

X 

-- 

N X L2/$D = (1 t p2)2 / (1  t pz T) t (Et L4/r4R2D) 1/ (  1 t p2 T ) ( l f  p2)2 (3 )  

where 
1 

T = N /Nx and Z = (L2/Rt) (1 - v2)' 
Y 

When the expression on the right hand side of Eq. ( 3 )  is minimized with 

respect to p2, we obtain a quintic in p2:  

While Eq. (4) does not yield a simple algebraic expression for the roots of p2, 
one can use it to compute Z for various values of P2 and T by re-writing Eq. (4) 

as:  

1 2 z 2 / T 4  = (1tP2)* (2fP2T-T)/  (2 t3p2  T f T )  (5 )  

A substitution of Eq. (5) into Eq. ( 3 )  leads to the following expression for the 

buckling s t r e s s  coefficient 

k, = 4(lt(3a)2/(2t3(32 T t T )  ( 6 )  

Using Eqs. (5)  and (6) we can obtain a k-Z plot for various values of Z. 

RESULTS 

Before Eqs. (5)  and (6)  a r e  solved a s  such for some special values of 
p and T,  Eq. ( 3 )  can be minimized readily and simple expressions obtained 

for  k or  k in  t e rms  of Z. Thus: 
X Y 
(a) T = 0 (axial pressure)  leads to 

kx = 0.702 Z 

k = & / 3 r  (Zs / T )  o r  kx = 1.038 ( Z ~ / T )  

k = k = 1.038 Zz 

(b) T = 0 (1) and p2 >> 1 leads to 
1 1 

X 

1 (c)  T = 1 lead to,  

x \  Y 
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(d) T + 00 B2 >> 1 (lateral  pressure) leads to 
1 

k = 1.038 Zz 
Y 

Case (a) is valid for moderate length cylinders for which Z > 10 while (d) i s  

vaiid for Z - ; iGG 2% in Rcf. (I). 

cylinders, Z not less  than lo2 ,  the above equations a r e  valid. 

- 
Ilrtnce, TUP may say that for moderate length 

Eqs. (5) and (6)  have been solved for different values of T ,  assigning 

values of p for each T .  

logarithmic scale. 

line T = 1 is also shown a s  the k = 1.0382’ line for the la teral  p ressure  

case; this is because a s  T becomes > 1, the cri t ical  s t r e s s  is written a s  k 
instead of k,. 

Figure 2 shows a k - Z plot for different values on a 
X 

The T = 0 line represents the axial p ressure  case. The 
1 

Y 

Y - 
Eq. 1(8) shows that fo r  a l l  T >  - 1, and p >>1, we obtain 

= k = 1.038 Z z .  T k x  y 
It is interesting to note the influence of T on the kx - Z curves. For  

small  T values and moderate values of Z, they follow the k = 0.702 Z line and 

as Z increases in value such that (p2 T )  >>1, the slope of the curve decreases 

until they become parallel to  the Zz line. This asymptotic behavior is evident 

f rom Eq. (3)  where i f  (P2 7) >>1 for all T ,  however small  T be, then a minimi- 

zation yields kx = 1.038 Z z / ~ .  Hence, even for small  T values, a s  Z becomes 

sufficiently large the curve becomes parallel to the la teral  pressure case and 

this behavior remains as T increases. 

X 

1 

1 

Figs. (2)  and (3) present the data in slightly different forms  to bring out 

the role of t on the stability problem, 

Fig. (3) plots values of kx at  any T ,  normalized with respect to the kx for 

the compressive case,  against Z. 

Fig. (2) shows a k - Z plot, while 
Y 

CONCLUDING REMARKS 

From the data presented in the figures,  one may conclude that no matter  

by what loading mechanism the parameter T is introduced, the characterist ic 

of the compressive buckling problem is affected profoundly. 

values of buckling s t resses  a r e  lowered significantly; secondly, there  i s  a Z 

dependence of the buckling coefficient k, a s  contrasted with the compressive 

case: that is, the slope keeps decreasing as Z increases;  finally, for large 

values of Z the slope of the kx - Z plot follows the la teral  pressure case. 

unstiffened cylinder under axial compressive loads. 

Firs t ly ,  the 

These results have certain interesting implications that pertain to an 
If it is postulated that a 
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small T value is generated a s  a result of initial imperfections o r  prebuckling 
deformations, then the results presented in Figs.  (2)  and (3) indicate an 

unusual sensitivity to small  values of T .  

theoretical resul ts  presented in F i g .  ( 2 )  follow the trend of tes t  data on 

cylinders segregated according to  R / t  values. Furthermore,  Fig. ( 3 )  is 

suggestive of the usual C vs. R/t plots for tes t  data on unstiffened cylinders. 

It is interesting to observe that the 
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